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Heavy quark potential and quarkonia dissociation rates
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Abstract. Quenched lattice data for the QQ̄ interaction (in terms of heavy quark free energies) in the
color-singlet channel at finite temperatures are fitted and used within the non-relativistic Schrödinger
equation formalism to obtain binding energies and scattering phase shifts for the lowest eigenstates in
the charmonium and bottomonium systems in a hot gluon plasma. The partial dissociation rate due to
the Bhanot–Peskin process is calculated using different assumptions for the gluon distribution function,
including free massless gluons, massive gluons, and massive damped gluons. It is demonstrated that a
temperature dependent gluon mass has an essential influence on the heavy quarkonia dissociation, but
that this process alone is insufficient to describe the heavy quarkonia dissociation rates.

PACS. 12.38.Gc, 12.38.Mh, 14.40.Gx

1 Introduction

Heavy quarkonia have been suggested as hard probes of
the quark–gluon plasma [1] since the modification of static
interactions at finite temperature eventually implies a dis-
solution of heavy quarkonia bound states into the contin-
uum of scattering states (Mott effect).

The dissolution of quarkonium bound states in heavy-
ion collisions results in an observable suppression of heavy
quarkonium production. Since the Mott temperatures for
J/ψ, Υ and Υ ′ as obtained by solving the Schrödinger
equation for a screened Cornell-type potential lie well
above the critical temperature Tc for deconfinement [2], it
had soon been realized that a kinetic theory is necessary
for the description of heavy quarkonia dissociation [3]; see
[4,5] for recent formulations. Solutions of the Schrödinger
equation provide the basis for the evaluation of cross sec-
tions and rates for the Bhanot–Peskin process [6] of heavy
quarkonia dissociation by gluon impact [7]. In this contri-
bution we present a new fit to the singlet free energies
from quenched lattice QCD simulations [8,9] and show
that binding energies and cross sections deviate from those
obtained for Debye potential fits [10–12]. Recently spec-
tral function analyses of quarkonia within lattice QCD
have revealed that the J/ψ survives as a well identifiable
resonance above its Mott temperature [13,14]. We present
results of a phase shift analysis which suggest the presence
of correlations even above the Mott temperature and are
thus in qualitative agreement with this observation. Alter-
native attempts to solve the apparent discrepancy while
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neglecting scattering state contributions to the resonance
spectral function argued for changing the potential in the
Schrödinger equation in order to obtain higher Mott tem-
peratures; see the review by Karsch [15].

2 Heavy quark potential

The main source of our knowledge of the static interaction
for a heavy quark–antiquark (QQ̄) system at high temper-
ature are calculations of the Polyakov-loop correlator from
lattice QCD.

The color-singlet part F1 of the free energy of a quark–
antiquark system is obtained from the equation

〈Tr[L(0)L†(r)]〉 = exp[−F1(r)/T ] (1)

and is interpreted hereafter as the effective static QQ̄ in-
teraction potential in a hot gluon plasma.

2.1 Zero temperature

At zero temperature, we will consider the color-singlet
heavy quark potential V1(r) in the Schrödinger equation
in order to describe the heavy quarkonia bound state spec-
trum. By fitting the spectrum the two unknown parame-
ters can be determined: the heavy quark mass and a con-
stant shift of the whole potential. The behavior of the
quark–antiquark interaction in the color-singlet channel
was investigated in [16] within the combined lattice and
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Fig. 1. Lattice data for the singlet free energy [9] at different
temperatures; see legend. Solid lines are obtained with the fit
on the basis of the Dixit formula (7), the dashed line is the
T = 0 potential V1(r)

perturbative approach in quenched QCD. We fit these
data points implementing a χ2 minimization to the Ansatz

V1(r) =

{
V1,short(r), r < r0,

V1,long(r), r ≥ r0,
(2)

where V1,short(r) describes the interaction at short dis-
tances whereas V1,long(r) is responsible for the long-distan-
ce forces. Both expressions are matched at r = r0 which
is defined below. This point, as we shall see, lies in the
domain of perturbative QCD. We use the combined linear
and Coulomb potential to describe the long-distance inter-
action and the Coulomb interaction with the r-dependent
coupling constant α(r) for short distances:

V1,long(r) = σr − π
12r

, (3)

V1,short(r) = −4
3
α(r)
r

, (4)

α(r) =
4π
11

(
1

ln (r2/c2)
− r2

r2 − c2

)
. (5)

The formula for α(r) is obtained by solving the one-loop
renormalization group equation for the running coupling
constant in QCD followed by the pole subtraction [17].
The constant c

√
σ ≈ 1.816 and the point r0

√
σ ≈ 0.031 in

units of the string tension
√
σ = 0.42 GeV are determined

from the condition that the potential is a smooth function
at r = r0 ≈ 0.0146 fm. The result is given by the dashed
line in Fig. 1.

2.2 Singlet free energy at high temperature

For the singlet free energy of a static quark–antiquark
system at high temperature (T > Tc) we assume that

the short-range interaction governed by pQCD coincides
with the zero-temperature form of the previous subsec-
tion whereas the long-distance interaction F1,long(r, T ) re-
quires theoretical assumptions about its shape. Instead of
the frequently used screened Coulomb potential, we follow
Dixit [18] and assume the potential behavior at large r as
follows:

F1,long(r, T ) = − q2(T )
23/4Γ (3/4)

√
r

µ(T )
K1/4

[
(µ(T )r)2

]

+q2(T )
Γ (1/4)

23/2Γ (3/4)µ(T )
, (6)

where K1/4(x) is a modified Bessel function. A similar
parameterization was used by Digal et al. [19]. We add to
this term a screened Coulomb attraction at short distances
and obtain

F1(r, T ) = F1,long(r, T ) + V1,short(r)e−(µ(T )r)2 . (7)

The two temperature dependent parameters q(T ) and
µ(T ) are determined from a fit to the lattice data [9];
their behavior for 1.5 ≤ T/Tc ≤ 3.0 can be represented
as µ(T )/

√
σ = 0.540 + 0.778T/Tc, q2(T )/σ = 1.57 −

0.592T/Tc; Tc = 0.264 GeV. In Fig. 1 we compare lattice
data with the fit for F1,long(r, T ) at selected temperatures.

3 Heavy quarkonia

3.1 Quarkonia at zero temperature

The masses of quarkonia in the vacuum are defined as

M = 2mQ + E + v0, (8)

where mQ is the quark mass, and the energy E is an eigen-
value of the Schrödinger equation

[−∇2/mQ + V (r)]ψ(r) = Eψ(r), (9)

where V (r) is identified with the zero-temperature poten-
tial V1(r) of (2) up to an unknown constant v0. Substitut-
ing the wave function ψn�m(r, θ, φ) = r−1Rn�(r)Y�m(θ, φ)
into (9), one obtains an equation for Rn�(r). At large r,
the potential is linear, and the solution of this equation
behaves as the Airy function Rn�(r) ∼ Ai(κr − ξ), where
κ3 = mQσ and ξ = mQE/κ

2.
The masses of 1S and 4S states [20] are used as in-

put. For charmonium we obtain mc = 1.45 GeV and the
constant v0 = −0.302 GeV. For bottomonium we have
mb = 4.785 GeV with the same v0. Once mc, mb, and
v0 are fixed, the remaining quarkonia spectrum is well
described [21]. Note that in the purely gluonic system
(quenched QCD) at T = 0, there is no continuum thresh-
old from which the binding energy EB could be defined.

3.2 Quarkonia at finite temperature

The Schrödinger equation for a bound state in the QGP
has the form

[−∇2/mQ + Veff(r, T )]ψ(r, T ) = EB(T )ψ(r, T ), (10)
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Fig. 2. Binding energies of heavy quarkonia states from solu-
tion of the Schrödinger equation for the T -dependent effective
potential of Fig. 1

where EB(T ) > 0 is the temperature dependent binding
energy. The medium effects on theQQ̄ system are modeled
using the singlet free energies [9] as an effective potential
Veff(r, T ) = F1(r, T ) −F∞(T ) with the continuum thresh-
old F∞(T ) = limr→∞ F1(r, T ). The temperature depen-
dent mass of a quarkonium bound state is defined as

M(T ) = 2mQ − EB(T ) + v0 + F∞(T ). (11)

The solutions for the binding energy both for charmonium
and bottomonium are shown in Fig. 2.

The wave function of an unbound quark–antiquark sys-
tem can be calculated via the S-wave phase shift function
δS(r) by solving the equation [22]

dδS(k, r, T )
dr

= −mQVeff(r, T )
k

[sin(kr + δS(k, r, T ))] .

(12)
The phase shift is defined as δS(k, T ) ≡ δS(k,∞, T ) and
results are shown in Fig. 3 for charmonia and bottomonia
states at different temperatures. In accordance with the
Levinson theorem, the scattering phase shift at threshold
changes by π once a bound state merges the continuum at
its Mott temperature; TMott/Tc ≈ 1.05, 1.20, 2.25 for Υ ′,
J/ψ, Υ , respectively; see Figs. 2 and 3.

4 Dissociation of quarkonia by gluon impact

We calculate the cross section for the Bhanot–Peskin pro-
cess [6] similarly to the case of the deuteron photodissoci-
ation [11,23]

σ(QQ̄)g(ω) =
4παgQ

3
(k2 + k2

0)
k

(∫ ∞

0
u1P (r)u1S(r) r dr

)2

,

(13)∫ ∞

0
|u1S(r)|2dr = 1, αgQ = αs/6, k2

0 = mQEB(T ), (14)

where we used Rn�(r) = un�(r)e−k0r. For the 1P state,
one can use the wave function of a free QQ̄ system:

u1P (r) =
sin kr
kr

− cos kr, k2 = mQ(ω − EB(T )). (15)
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Fig. 4. Cross sections for J/ψ and Υ dissociation by the
Bhanot–Peskin process

For the constant αs in (14), we take an average over the
low energy region below 1 GeV, which gives αs ≈ 0.48. As
a result, we obtain the cross sections shown in Fig. 4. Their
peak values correspond to the geometrical ones (πR2(T ))
with the T -dependent radius R(T ) of the quarkonia wave
function [21].

Now we can estimate the dissociation rate of the char-
monium and bottomonium by gluon impact according to

Γ(Q̄Q)g(T ) (16)

=
∫ ∞

0
dsA(s)

∫ ∞

s

dω2

4π2

√
ω2 − s σ(QQ̄)g(ω)ng(ω),
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Fig. 5. Dissociation rates of heavy quarkonia in a hot gluon
plasma obtained with massive damped (m.d.), massive un-
damped (m.u.) and massless (free) gluon distributions in (16),
respectively

where A(s) is the normalized gluon spectral function

A(s) =
1
π

√
sγ

(s−m2
g)2 + sγ2 ,

∫ ∞

0
dsA(s) = 1, (17)

and the thermal gluon distribution function is given by
ng(ω) = 2(N2

c − 1)[exp(ω/T ) − 1]−1. The temperature
dependent gluon mass mg and damping width γ are taken
from a recent fit to lattice QCD data for the entropy in
pure gauge [24], m2

g = 2πᾱ T 2, γ = 3ᾱ T ln(2.67/ᾱ), where
ᾱ = 12π/[33 ln(3.7(T/Tc − 0.67))2]. The results are shown
in Fig. 5 and compared with the cases when the damping
width and also the gluon mass are neglected.

5 Conclusions

We have used a new fit to recent quenched lattice data
for the QQ̄ singlet free energies at finite temperatures to
obtain binding energies and scattering phase shifts for the
lowest eigenstates in the charmonium and bottomonium
systems within the Schrödinger equation formalism. In
contrast to results on the basis of a Debye potential fit, we
obtain much smaller finite temperature quarkonia bind-
ing energies, entailing large dissociation cross sections for
the Bhanot–Peskin process. The corresponding dissocia-
tion rates have been evaluated using different assumptions
for the gluon distribution function, including free massless
gluons, massive gluons, and massive damped gluons. We
have demonstrated that a temperature dependent gluon
mass has an essential influence on the heavy quarkonia
dissociation. However, the Bhanot–Peskin process alone is
insufficient to describe the quarkonium dissociation pro-
cess [5,7]. On the basis of the spectrum and wave func-
tions obtained here we will study next the QQ̄ spectral
functions above the Mott temperature and compare the
results with corresponding lattice studies [13–15].
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